

DELIVERABLE

Project Acronym: Europeana Cloud

Grant Agreement Number: 325091

Project Title: Europeana Cloud: Unlocking Europe’s Research via The Cloud

Deliverable 5.2. Practical User Guide (Handbook for the Europeana
Cloud participants)

Revision: 1.0

Authors: Victor-Jan Vos, Europeana

Pavel Kats, Europeana
Lucas Anastasiou, The Open University

Project co-funded by the European Commission within the ICT Policy Support Programme
Dissemination Level
P Public

Europeana Cloud Business Model - 1

Revision History

Revision Date Author Description

0.5 27-8-2016 Lucas Anastasiou DPS Plugin Tutorial

1 18-4-2016 Pavel Kats Initial Version, aggregated tutorials

2 20-4-2016 Victor-Jan Vos Revision

3 22-4-2016 Victor-Jan Vos Final

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of
others has been made through appropriate citation, quotation or both.

Europeana Cloud Business Model - 2

D5.2 Europeana Cloud Practical User Guide
This deliverable describes the user documentation of the Europeana Cloud Shared Services.
Since the shared services are meant to be used by developers, the practical user guide’s
intended audience are developers and stored on GitHub. In the future, Europeana will provide
access to the documentation via Europeana Pro as well.

This documentation describes how aggregators’ developers can make use of Europeana
Shared Services for data partner and provide guidance for all features and functionalities of the
service. It functions as a tutorial for uptake of the wider use of the services.

The first tutorial for a wide developer audience. It covers Europeana Cloud’s data model and the
Cloud API, which is what a typical developer needs to start using the services. So it is intended
for developers in partner institutions - aggregators, data providers, re-users, and does not
require any knowledge beyond the standard toolkit of today's developer.

The tutorial is maintained on Github:

https://github.com/europeana/Europeana-Cloud/wiki/Europeana-Cloud-API

The second tutorial is for developers who wish to develop new services (i.e. a Data Partner
Service plugin) using Europeana Cloud Shared Services. It goes more in-depth to technology,
demands acquaintance with the principles of distributed systems and distributed processing and
uses a very specialised language. It is intended for a small audience of highly-skilled
developers, interested in being intimately involved with the infrastructure. The tutorial is shown
below.

DPS plugin development tutorial

A quick look in the processing architecture

Europeanna Cloud bases its processing infrastructure on the distributed computation framework
Apache Storm1. Storm enables users to create their custom processing applications by utilising
a series of application interfaces and combining them in “topologies”.
...

1 https://storm.apache.org/

Europeana Cloud Business Model - 3

Creating a new processing node (spout or bolt)
To create a new node (apart the given ones) to implement your custom business logic you need
to extend the abstract class AbstractDpsBolt (found in DPS service commons module under
eu.europeana.cloud.service.dps.storm package).

This means your Bolt code should look something like:

package com.mycompany.dps_tutorial;

import eu.europeana.cloud.service.dps.storm.AbstractDpsBolt;
import eu.europeana.cloud.service.dps.storm.StormTaskTuple;

/**
 *
 * @author lucasanastasiou
 */
public class MyBolt extends AbstractDpsBolt {

 @Override
 public void execute(StormTaskTuple t) {
 //
 // your code goes here
 //
 }

 @Override
 public void prepare() {
 //
 // your code goes here
 //
 }
}

As you can see there are two methods that you need to implement. The first one is void
prepare() where you put everything that needs to be initiated before the actual processing takes
place. Here would be a good place for example to establish a database connection or to
initialise an external service. Bear in mind that if nothing needs to be initialised it can be left
empty.

The second method is void execute(StormTaskTuple t). Here goes everything that implements
the actual processing. It takes as an input a StormTaskTuple which is a Storm tuple that is
aware of what DPS task is currently executing. Note that function is a void so it does not return
anything but if you want to send something to the next bolt in line you should make use of the

Europeana Cloud Business Model - 4

outputCollector. So after you finish with processing you shall construct a new StormTaskTuple
and emit it to the next bolt using the OutputCollector.

So your execute(StromTaskTuple input) function would basically look like

@Override
 public void execute(StormTaskTuple input) {
 // step 1 - get data from tuple
 Map<String,String> parameters = input.getParameters();

 inputData = parameters.get(“key-of-your-input-data”)

 // step 2 - do something with these data
 // implement your algorithm here

 // step 3 - construct an output tuple to emit to next bolt
 StormTaskTuple outputTuple = new
StormTaskTuple(taskId,outputData, outputParameters);
 _collector.emit(“stream-to-next-bolt”,outputTuple);
 _collector.ack(input);
 }

What features are available
As explained in the previous section Storm topologies comprise of spouts and bolts connected
in a directed graph. Europeana Cloud offers some ready to use components for developers to
combine and build their own topology implementing their own business logic. Such nodes are:

● Read File Bolt
● Write Record Bolt
● Read Dataset Bolt
● Store File as a new Representation Bolt
● Progress Bolt
● Parse Task Bolt

#TODO add a short description of each bolt’s function

Combining nodes to a topology
Assuming you have all your spouts and bolts next step would be to meaningfully combine them
to implement the workflow you have in mind.
To define the topology you would need to use TopologyBuilder class. So first you instantiate a
new TopologyBuilder by

TopologyBuilder builder = new TopologyBuilder();

Europeana Cloud Business Model - 5

and then you set the processing nodes for this topology by using the setSpout and setBolt
methods. Eventually you topology building block would look like:

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("name-of-spout", new MySpout(), 5);
builder.setBolt("name-of-bolt-1", new MyBolt(arg1,arg2),5);
builder.setBolt("name-of-bolt-2", new MyOtherBolt(arg3,arg4),5);

Method setSpout/setBolt takes 3 arguments:
id: a name to identify your node
spout/bolt: your node implementation (it needs to implement the IRichSpout / IRichBolt
interface)
parralelism_hint: a number to denote the initial number of threads of this component

There are various ways to connect the defined bolts i.e. to explicitly declare the “edges” of your
topology, the simplest way is by streams groupings. When defining the bolt in your builder, to
group bolt1 with the spout you would do:

builder.setBolt("name-of-bolt-1", new MyBolt(arg1,arg2),5)
 .shuffleGrouping(“name-of-spout”);

So by simply using the shuffleGrouping(id) method you declare that bolt1 is connected to the
spout. And to connect bolt2 to bolt1:

builder.setBolt("name-of-bolt-2", new MyOtherBolt(arg3,arg4),5)
 .shuffleGrouping(“name-of-bolt-1”);

#TODO mention shuffleGroupings with 2 args (boltID, streamID)

So by the above small code pieces you have created a topology like figure 1:
#TODO
<figure of 3 circles : spout -> bolt1 ->bolt2>

Running your tologies:
In Local mode
Deploy in Storm cluster
#TODO end

Europeana Cloud Business Model - 6

Europeana Cloud Business Model - 7

A plugin to convert .png to .jpeg
So far we explained how to use Storm in general to build arbitrary topologies but we also
showed some of the ready-to-use features of eCLoud Data Processing Service. We would now
combine everything to build a simple plugin to convert images stored in eCLoud records from
one format (e.g. .png) to other (e.g. jpeg) and store the converted image as a new
representation in the record. We would also show how this topology shall be used in the eCloud
environment (how to start such processing task, how to monitor progress, how to see a final
report of the execution of the task).

Your topology starts with a spout!

The initial node is of course a spout that is only responsible to connect to the DPS Rest API and
“listen” for any incoming DPS Tasks. This connection is implemented through the notification
service (Apache Kafka) where DPS Rest APi acts as a producer, each topology has its own
dedicated kafka topic and the spout acts as a consumer of kafka messages. So it receives a
kafka message which contains the DPS task (in a serialised form) and emits this task (as a
tuple) to the next node of the topology.

Europeana Cloud Business Model - 8

Adding a bolt

The second node of the topology would be a ParseDPSTask bolt i.e. a bolt that would identify
what are the inputData and what are the parameters enclosed in the serialised DPS Task and
convert them into a meaningful to Storm data structure: StormTaskTuple (a storm tuple that is
aware of the dps task that it is part of). Another use of this bolt is to “route” tuples to specific
streams by task name (in case you are building a more complex topology than the one we are
showing here). Also when you instantiate this bolt you can also define what are the required
parameters for your topology.

Read the image file from MCS

Next bolt would be a bolt to read the image file from MCS. Having the inputData enclosed in the
StormTaskTuple we have received from the previous bolt, we can retrieve the resource by its
URI and embed its binary data to the tuple that we are emitting to the next bolt

Europeana Cloud Business Model - 9

Convert image bolt

Now that we have the image (as binary input stream enclosed in the storm tuple) we can
proceed to do the actual processing : transcoding the image from the input .png format to .jpeg
format. To do so we use the standard java library ImageIO:

try {
 // fetch the image from the input tuple
 ByteArrayInputStream inputImage =
t.getFileByteDataAsStream();
 BufferedImage bufferedImage = ImageIO.read(inputImage);
 OutputStream os = new ByteArrayOutputStream();
 // transcoding to jpeg
 ImageIO.write(bufferedImage, "jpg", os);

 t.setFileData(os.toString());
 //emitting to the next bolt
 outputCollector.emit("stream-to-next-bolt",
t.toStormTuple());

 } catch (IOException ex) {
}

Europeana Cloud Business Model - 10

Store back as a new representation

Using the StoreFileAsRepresentationBolt we store the converted image as a new representation
in the record that the initial representation exists.

End processing

We finish our topology by an EndBolt. This bolt can be optionally used to send an email
notification to the end user that the task finished execution (mind that in this example topology
we are dealing only with one resource so finishing the processing of one tuple is equivalent to
finishing the execution of the task but in the case we are dealing with many resources per task

Europeana Cloud Business Model - 11

this can be tricky to identify and can only be achieved by the introduction of the Notification bolt
we will see later).

Putting everything together
To build our topology we use TopologyBuilder again:

TopologyBuilder builder = new TopologyBuilder();

 // entry spout
 BrokerHosts brokerHosts = new ZkHosts(ZOOKEEPER_LOCATION);
 SpoutConfig spoutConf = new SpoutConfig(brokerHosts,
KAFKA_TOPIC, ZK_ROOT, ID);
 builder.setSpout("KafkaSpout", new KafkaSpout(spoutConf), 1);

 //bolt 1
 builder.setBolt("ParseDpsTask", new ParseTaskBolt(), 1)
 .shuffleGrouping("KafkaSpout");

 //bolt 2
 builder.setBolt("RetrieveFile", new
ReadFileBolt(ECLOUD_MCS_ADDRESS, ECLOUD_MCS_USERNAME,
ECLOUD_MCS_PASSWORD), 1)
 .shuffleGrouping("ParseDpsTask");

 //bolt 3
 builder.setBolt("ConvertBolt", new ConvertBolt(), 1)
 .shuffleGrouping("RetrieveFile");

 //bolt 4
 builder.setBolt("StoreBolt", new
StoreFileAsRepresentationBolt(ECLOUD_MCS_ADDRESS, ECLOUD_MCS_USERNAME,
ECLOUD_MCS_PASSWORD), 1)
 .shuffleGrouping("ConvertBolt");

 //bolt5
 builder.setBolt("EndBolt", new EndBolt(),
1).shuffleGrouping("StoreBolt");

Europeana Cloud Business Model - 12

How to invoke your plugin
After you have deployed the storm topology to the storm cluster you can interact with it via the
DPS REST API. To submit a new task you would do:

$> curl -u admin:admin -XPOST
http://www.example.com/topologies/convert-topology/tasks -d '
{
 "task_name":"convert_image",
 "inputData":{
 "FILE_URIS":["http://www.example.com/.../my_picture.png"]
 },
 "parameters":{
 "SOURCE_FORMAT":"png",
 "OUTPUT_FORMAT":"jpeg",
 "EMAIL_ON_COMPLETION":true,
 "NOTIFICATION_EMAIL":"lucas@example.com"
 }
}'

$> {"taskId":"12345", "time":123456789010}

This POST request submits a DPS Task to the notification service and task shall soon be
picked up by Storm’s topology and start executing (usually after a few ms). End user only
gets the generated task ID and the unix timestamp of the time of the submission.

Europeana Cloud Business Model - 13

What about progress?
You might have noticed that so far there is no mechanism to capture the progress of this task. It
may be a task containing just one resource to process but it can be easily modified to take as
input many files or even a full dataset (of perhaps thousands records to process). In such case it
would be very useful for the client executing the task to know the progress of the task.

Introducing the Notification bolt
As part of the ready-to-use bolts and spouts, eCLoud offers Notification bolt : a special bolt that
can act as a monitor of the execution of tasks in each topology. In order to use you should
connect this bolt to each existing bolt of your topology, for instance for the convert topology you
should add in you TopologyBuilder:

 //notification bolt
 builder.setBolt("NotificationBolt", new
NotificationBolt("convert-topology", CASSANDRA_HOSTS, CASSANDRA_PORT,
CASSANDRA_KEYSPACE_NAME, CASSANDRA_USERNAME, CASSANDRA_PASSWORD), 1)

Europeana Cloud Business Model - 14

 .shuffleGrouping("ParseDpsTask", NOTIFICATION_STREAM)
 .shuffleGrouping("RetrieveFile", NOTIFICATION_STREAM)
 .shuffleGrouping("ConvertBolt", NOTIFICATION_STREAM)
 .shuffleGrouping("StoreBolt", NOTIFICATION_STREAM)
 .shuffleGrouping("EndBolt", NOTIFICATION_STREAM);

Every time you gather some information (successful process of a resource, some error,
exception) you should create a NotificationTuple in the bolt that this update happens and send it
to the Notification Bolt which in turn will update a database with this info. This report database
will be later on queried by DPS Rest API via /progress and /notification calls to return report
information on the status of the task. To ease this “notify” operation eCloud has various utility
functions already implemented in each bolt (assuming you are extending AbstractDpsBolt):

- emitDropNotification(long taskId, String resource, String message, String
additionalInformations)

- emitSuccessNotification(long taskId, String resource, String message, String
additionalInformations

- emitErrorNotification(long taskId, String resource, String message, String
additionalInformations)

- emitBasicInfo(long taskId, int expectedSize)

So in the current example convert-topology the convert bolt now looks:

@Override
 public void execute(StormTaskTuple t) {

Europeana Cloud Business Model - 15

 try {
 ByteArrayInputStream inputImage =
t.getFileByteDataAsStream();
 BufferedImage bufferedImage = ImageIO.read(inputImage);
 OutputStream os = new ByteArrayOutputStream();
 ImageIO.write(bufferedImage, "jpg", os);

 t.setFileData(os.toString());
 outputCollector.emit("stream-to-next-bolt",
t.toStormTuple());

 } catch (IOException ex) {
 // send notification of error
 this.emitErrorNotification(t.getTaskId(), t.getFileUrl(),
ex.getMessage(), "");
 return;
 }
 this.emitSuccessNotification(t.getTaskId(), t.getFileUrl(),
"Yey!", "");
 }

Checking the progress of a DPS task
Now that we have a progress mechanism implemented in our topology, if we wish to see the
progress of the task then you do:

$> curl -u admin:admin -XGET
http://www.example.com/topologies/convert-
topology/tasks/12345/progress/
$> {"taskId":"12345", "expected_size":1,
"processed_tuples_count":0,”topology_name”:”convert-topology”}

Report of a DPS task
To get a full list of what tuples have been processed (or perhaps when the task is done to have
a full report) you would do:

$> curl -u admin:admin -XGET
http://www.example.com/topologies/convert-
topology/tasks/12345/notification/
$> {"taskId":"12345","processed_tuples":[

Europeana Cloud Business Model - 16

http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/
http://www.example.com/topologies/convert-topology/tasks/taskId/progress/

{"resource_URI":"http://www.example.com/records/aXb7xQew/representa
tions/image/versions/0ewer2xqwl/files/image.png/",
"time":123456789012, state":"SUCCESS", "information":"",
"additional_information":""}
]}

Mind that if we were dealing with say a dataset that would have many resources associated
with it the above call would look something like:
{"taskId":"12346","processed_tuples":[
{"resource_URI":"http://www.example.com/records/aXb7xQew/representatio
ns/image/versions/0ewer2xqwl/files/image.png/", "time":123456789012,
state":"SUCCESS", "information":"", "additional_information":""},
{"resource_URI":"http://www.example.com/records/ar45dakm/representatio
ns/image/versions/93naiqufnd/files/image.png/", "time":123456789015,
state":"ERROR", "information":"javax.imageio.IIOException: Can't read
input file!
Resource not found: C:\icon.gif
at javax.imageio.ImageIO.read(ImageIO.java:1301)
at connector.SystemTrayCreator.createImage(SystemTrayCreator.java:98)
at connector.SystemTrayCreator.create(SystemTrayCreator.java:36)
at connector.Start.main(Start.java:14)",
"additional_information":"Error while converting image"},
{"resource_URI":"http://www.example.com/records/2305ufaj/representatio
ns/image/versions/akas0111l2l3/files/image.png/", "time":123456789015,
state":"SUCCESS", "information":"", "additional_information":""}
]}

Note that in the case of the error tuple we have the full java exception in the information field
detailing what went wrong. As developer you are free to decide what sort of information you
would like to put in this field.

Europeana Cloud Business Model - 17

	A quick look in the processing architecture
	Creating a new processing node (spout or bolt)
	What features are available
	Combining nodes to a topology
	A plugin to convert .png to .jpeg
	Your topology starts with a spout!
	Adding a bolt
	Read the image file from MCS
	Convert image bolt
	Store back as a new representation
	End processing
	Putting everything together
	How to invoke your plugin
	What about progress?
	Introducing the Notification bolt
	Checking the progress of a DPS task
	Report of a DPS task

